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ABSTRACT

The problem of maximum range atmospheric reentry for an orbiting

lifting glider was treated by Bryson and Denham by the method of

"steepest ascent" <, The same problem is undertaken here by a method

of differential corrections developed by Faulkner , This method makes

use of a Newton-Raphson type iteration based on paths which satisfy

the Euler-Lagrange equations, A comparison of results is made D show=

ing large differences in control variable history „ and longer range

for the path obtained by differential corrections . The problem was

characterized by a sharp "ridge

'

! in the domain of the starting values

of the adjoint variables and the effect of this on the convergence of

both methods is discussed. Finally , the difficulty of choosing initial

approximations for the starting values of the adjoint variables is

discussed, and a method is presented for obtaining these from a nominal

path as the first step in the computer routine.

1

A, E Bryson and W, F. Denham , A steepest-ascent method for solv=
ing optimum programming problems (Ratheon report BR»1303), Raytheon
Company, Bedford, Mass c , 1961.

ii
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INTRODUCTION

A problem of optimum control may be described very roughly as

the determination of the decision-making or control function which

will result in the largest possible value of the final "payoff" from

some continuing process

„

The process might be illustrated as shown in figure 1<,1 9 where

P is the "payoff" B something whose value depends on the terminal point

or the path history , and Q is a set of given constraints which must be

satisfied

„

Given initial point.

t = T

P = maximum
Q =

Fig c 1 e 1 An Optimum Path

The methods of solution commonly used now were foreseen at least

forty years ago, but the volume of computation required limited their

application to only the simplest of problems „ In the past ten years

there has been an explosion of interest due to the availability of

high-speed digital computers on the one hand,, and on the other hand

to the urgent need for solutions in such applications as space

trajectories o The "state of the art" is such that no method is com-



pletely general , and a great diversity of approaches is employed 9

reflecting the absence of a firm framework of mathematical theory

concerning nonlinear differential equations D

In this thesis a comparison is made between two methods for cal-

culating optimum angle of attack programs for a lifting unpowered

vehicle to attain maximum range „ starting from circular orbital

velocity at a height of 3°0 thousand feet above the surface of the

earth. The problem was chosen because it is typical of a class of

problems in which there is now great interest 9 and because two of

the foremost workers in the field of optimizations, Arthur E„ Bryson

and W, Fo Denham„ had published a clear and well-documented solution

by the method of "steepest ascent"

„

The comparison was suggested by Stanley Ross, while one of the

writers was engaged in summer field work under the sponsorship of

the Lockheed Missile and Space Company, John V, Breakwell and George

Leitmann generously gave many hours of their time to general dis-

cussions and made specific suggestions which were very helpful

»

Professor Frank D. Faulkner of the U 8 S Naval Postgraduate School

not only laid out the general form of the problem and overcame the

difficulties that arose , but also the method of solution used was

the one developed by him from the basic method of differentials of

Bliss,



Chapter I

GENERAL FORMULATION OF A PROBLEM OF OPTIMUM CONTROL

1.1 The equations of motion, the control variables and the con-

straints .

It will be helpful to define an optimum control problem in

somewhat more exact terms than those given in the introductory

remarks

.

Suppose we are given a system whose behavior is described

by a system of differential equations which we shall call the

equations of motion. We will suppose that wherever any of these

differential equations is of higher than first order, we have de-

fined such additional variables as necessary so as to obtain n

first order differential equations of the form

S^ = *i^l» ®2* •••» Sji 9 p-i9 Pop •••« Pm» W

1 "~ J-
£> lC| c o a ji n

where the variables s. are the state variables , the p^ are the

control variables, t is the independent variables and the dot

denotes differentiation with respect to the independent variable,

It is assumed that the f. are of class C".

It will be convenient for what is to follow, if matrix

notation is adopted at this point. The equations of motion may

be written as the single matrix equation

(1.1) S F(S, P, t)



where

S =

n

, an nxl matrix of the dependent state
variables

F

n

, an nxl matrix of known functions of the
control variables, the state variables

,

and possibly the independent variable

P =

m

, an mxl matrix of control variables ,

which we are free to choose as functions
of t.

In addition, there are k constraints or end conditions, of the form

e.(S,t) = 0, which may define values of the state variables at the

end point t = T, or may be of integral form such as

Kz
h dt = constant,

In the latter case, we shall define an additional variable sn+-j_

so that

s = f.
n+1 i

with the initial and end conditions



s
n+l <°> = °

'n+1 (T) = the given constant.

These may be written as

(1.2) E =
, a kxl matrix of constraint functions

We wish to discover the particular control variable

program which will drive this system from a given initial point

to some terminal point which, of the set of all such points which

satisfy the terminal constraints, gives a maximum value to some

function, M(S,t), of the state variables; that is, for the ter-

minal point t = T, possibly unknown,

M(S,t)
T

= M(T) = max.

1.2 Bounded control variables and inequality constraints.

The permissible domain of the control variables may likewise

be limited. Some examples of restrictions on the control for com-

mon physical systems might be:

f p i ^ P max,

f P dt^I max,



P = P max for 0<t<t
x

and

P = for t
1
<t<T.

Bounded control variables appear frequently in real physical

systems. For solving these problems it may be useful to re-

place the inequalities by mathematically equivalent equalities

„

This is accomplished by the introduction of suitable new vari-

ables in the manner due to Valentine (ref.l). For instance,

for a constraint

0£p£P max

one may define the real variable g, so that

P( pmax - P) - g
2 = 0.

This procedure transforms the inequality to an equality, and we

adjoin this equation to the set (l.l). The same procedure is

applied in the case of inequality constraints or end conditions.

We will generally require that all state variables be speci-

fied initially, but this is not necessary. One or more of these

may be unspecified, that is "free".

The general form of these problems, then, is the two-point

boundary value problem. With the stipulation that the functional

M is to be maximized (or minimized) they become, depending on the

formulation, the classical problem of Bolza or problem of Mayer

of the calculus of variations. Since to maximize some quantity,

say u, is equivalent to minimizing the quantity minus u, we will

henceforth consider that the term "maximum" includes both cases



unless otherwise specified.

1.3 Degenerate problems.

Some important observations may be made here. First, as

pointed out by Faulkner (ref.2) and Breakwell (ref.3)» the case

in which all of the functions f . involve any function of a par-

ticular control variable only linearly are said to be degenerate .

These degenerate problems typically are of the "bang-bang" type

in which the control changes discontinuously. The neglect of

induced drag in aerodynamic problems for instance often results

in bang-bang control.

Second, the constraints must not involve the control variables,

or the problem is overspecified. If the control program is to be

such as to produce an extreme of the functional M, then it may not

simultaneously satisfy any prescribed constraint at any isolated

point of the path, else the solution is generally discontinuous.

1.4 The adjoint variables.

We shall introduce a set of Lagrange multipliers, as yet un-

determined

U=
fl'

U
2 \|

a lxn matrix of adjoint variables. The term 'adjoint" is used,

since they will be chosen to be solutions to the system of differ-

ential equations which is adjoint to equations for the variations

of the given system.

Suppose we write (1.1) as



S - F =

and integrate its product with the adjoint vector between the

limits of the independent variable. For convenience, we will

call these limits zero and T, and we have,

/ U(S - F) dt = 0.
o

The corresponding variational equation is

/
T
U(^S - F 6S - F f?) dt = 0.

o s P

Now this is integrated by parts to eliminate from the integrand

the variations of the state variables.

*k+

k-

(1.3) fi^l
T
=/

T
R U+UF )5S +U F6Pldt-jllu f1

k
dt

where Fs and F_ are the matrices of partial derivatives,

(l.M F. =

af
1
/ps

1
. . . 2>f

1
/as

n

9fn /3 s^ • • • ^^*n'^
sn

, an nxn matrix,

F
P

=

af
1/ap1

. . . a^/apj^

af
n /3pi • . . 3*jf2Pm

, an nxm matrix,

and t is a symbol for any point or set of points where S or U

is discontinuous.

Now, if U is chosen as a solution to the equation

8



(1.5) U + U F = 0,
5

then (3) becomes

— — T T + +
(1.6) )u6s] = / (U F S?) dt - L Fuf] k dt

This sequence of operations defines the system which is adjoint

to the variational equations of (1.1), OS - F 6S = F 6? ,
s p

and forms the 1 x n matrix, or vector

... .

U = u., u . . . u
J_ 1 2 n

Hereafter, no distinction will be drawn between a vector in

k-space and alxk or kxl matrix, or a corresponding

column or row of a matrix.

1.5 Green's formula and the Euler-Lagrange equations.

Equation (1.6)is the fundamental formula relating the varia-

tions of the end values of the state variables with the variations

of the control variables. Note that the formula shows the ter-

minal value of the adjoint variable to be the sensitivity of the

terminal value of the corresponding state variable to a change in

control. This interpretation will be discussed further in con-

nection with the transversal conditions (sect. 1. 9 ).

Equation (1.6) is often called Green's formula (one form).

See Coddington and LeVinson (ref. ^) page 86. The last term on



the right applies only at points of discontinuity of F, and
o

since these are discontinuities in S, they are corners".

Hereafter, it will be assumed that the solution does not have

a corner unless it is otherwise mentioned. In this case the

last term drops out. The fundamental lemma of the calculus of

variations states that, given a control program P(t) such that

the constraints E are satisfied, then if the coefficient of 6P

in (1.6) does not vanish for some solution U to the adjoint

it is possible to construct a variation such that the constraints

are still satisfied, but the function M exceeds the value on the

first path. A proof of this lemma is included in refs, (6) and (10)

Thus for M to have at least a stationary value M*

,

(1.7) UF = 0. (The Suler equation)

Equation (1.5) defines the system of equations which is adjoint

to the variations of the equations of motion, (1.1). The adjoint

equations and equation (1.7) will be called the Euler-Lagrange

equations. It will be shown that these, together with the con-

straints and the equations resulting from the transversal condi-

tions comprise a complete set which determines the optimum solution.

1.6 The maximum principle of Pontryagin.

The functions f. are often composed of terms which are func-

tions of the state variables alone and terms which contain also

the control variables. Suppose we collect terms of the first type

10



into an n x 1 matrix we will call V, and those of the second type

into an n x 1 matrix G. Then (1.1) becomes

S = V + G.

Now consider these matrices to be vectors in an n-dimensional

hyperspace of the state variables, and a particularly fruitful

geometric interpretation of (1.7) appears. Let us consider equa-

tion (1.7)

U • t =
P

as the condition that

U • G = max
P

that is, let us require that the vector G be everywhere so dir-

ected that the projection of G upon U is maximized. The control

program which maintains this relationship (while satisfying the

constraints) is optimum at least locally. This statement of the

condition is due to the Russian mathematician Pontryagin, and it

leads to particularly enlightening geometric formulations in many

hi
problems. Note that the shape of the domain of G then gives in-

sight into the behavior of the control program.

In figure 1.2 a hypothetical domain of G is shown by the

dashed line. The scalar quantity U • G is maximized when G has

a maximum projection on U at all times. Figure 1.3 shows the

situation where more than one G vector satisfies the maximum

condition. This generally yields a discontinuity of the control,

hence a "corner".

11
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The functions gi
will be called the "forcing functions".

It is the vector whose components are these functions which must

be directed so as to maximize its projection on the adjoint vec-

tor. The equation or equations which express this condition in

the form

Pi
= h(U, S, P, t)

are obtained by ordinary calculus from (1.7). They are sometimes

called "steering equations".

1.7 The Hamiltonian.

From the foregoing, one sees that the product UF has special

significance when U is chosen according to (1.5) • For convenience,

we shall define this quantity as the Hamiltonian function, H.

H = UF.

The maximum principle becomes

(1.3) H = max ,

P

and the general condition for an extreme of H is

(1.9) H = 0,
P

which is equivalent to (1.7).

For any one extremal, if t does not appear explicitly in the

13



equations of motion, the Hamiltonian is constant , This may be

shown readily, for

H UF + UF

= UF + UF S + UF P + UFXs p t

= (U + UFjF + UTP + UF. .
S p "L

But U + UF = by equation (1.5;, and UF =0 by (1.7), hence
s p

(1.10) H = UF
t

= H
t

In a great many problems , the independent variable does not

appear explicitly in the equations of motion, and the Hamiltonian

becomes a constant of the system. In the next section it will be

shown that in this case if the final value of the independent vari-

able, T, is free (that is, it is not the quantity to be optimized

and is not constrained) then H = everywhere on a given path,

provided the Euler-Lagrange equations (1.5) and (l.b) are every-

where satisfied on the path.

1.8 Systems which are linear in the state variables.

Consider the functional

T T

j[uF dt =f E dt =<p(T) .

If the differential equations of motion are linear in the state

variables, then the functional does not involve the state variables

14



and an absolute maximum may be obtained. If the differential

equations are not linear, then there are no corresponding gen-

eral proofs, ana we can look only for a stationary value and a

local extreme for the functional.

A system of differential equations which is linear in the

state variables with constant coefficients may be written as

S = A S + Q

where S is the nxl matrix of equation (1.1), Q is an nxl matrix

whose ith component is the forcing function of the control vari-

able in the ith direction, and A is an nyji matrix of constants.

Now, in analogy with the derivation of equation (1.6),we may form

the integral

J U(S - AS - Q)dt.
o

Integrating by parts

_ T T
|USj = / p + UA )S + UqI dt.oo

Taking U to be the solution to the adjoint equation U +UA = 0, we

have the form of the Green-Lagrange formula

T T

(1.11) [US] = /UQdt.
o o

Suppose that we have by some means discovered a set of

initial values for the adjoint variables and integrated forward

until, at some time T,

15



H 1. the curve satisfies the constraints on

the state variables and the control vari-

able,

H 2. the forcing function Q is such that UQ is

maximum everywhere on the curve, and

H 3» the terminal value of the kth component

of the adjoint vector is unity, and all

other components are zero at t = T,

In this case, Faulkner (ref. 5) shows that the curve furnishes an

absolute maximum for the kth state variable under the given initial

values and the constraints. Akheizer (ref, 6, sect. 2.15) and

Edelbaum (ref. 7» sects. 1.1 and 1.2) discuss conditions for

strong and weak extremes in this and in nonlinear cases.

1.9 The transversal condition.

The extremals have been discussed, as the solution curves

which satisfy the system

(1.12)

c

S - F =

1
"
+ UF =

s

H »

\ P
= UF =

P

Consider the system already discussed, and the corresponding

Green-Lagrange variational equation (1.6),

T T t + T

Iu6sl = /(UF 6P)dt - £ [uf1
k

dt, =f 6h dt.LJ oo P kLJ t- k °
k

16



We require that the tern on the left, evaluated at the starting

point be zero. If s.(o) is specified, then 6s. (0) = 0. If s^

is not specified, then we shall choose the particular solution

to the adjoint so that U.(0) =0. It is necessary that the last

term on the right be zero, else changing dt will offer a better

trajectory. There are variations for which b? is not "small" and

r T

J SH dt <0,
o

but for first order effects, the only condition on bs for an ex-

tremal is that

(u 6s)
T
= 0.

The form of the equation does not depend on the constraints » hence

we will define as admissible paths those which satisfy the constraints,

Since the constraints must be satisfied at t = T, the endpoint S(T)

must lie on the n - k dimensional surface

E(S,T) =

Hence, for an admissible differential at the endpoint,

de.
i Z. A ae./as.ds. + 3e./dtdT =0

or in matrix notation,

17



(1.13) dE (E
s
dS + EtdT)T

=

where dE and E^ are of dimension kxl, E is kxn and dS is nxl.

Es may be considered to be the gradient of E in n-space. If

Es is bordered on the right by the column E+, this may similar-

ly be considered to be the gradient of E in the n+1 space (of

the state variables and t ) which we will call VE .

VE* =

de-^/ds^ . . .ae-|_/asn
ae-j^/at

• V 9

Now if dS* is taken to be

dS* =

ds.

ds,

dT

n

(1.13) may be rewritten as

dE = (vE*dS*)
T

= 0.

In the same manner, we may have the gradient of M in n+1 space,

VM* = 9K/as
1

3K/5s
2

. . dM/ds
n

^/atj

and the augmented adjoint vector

U* £ u
2 • • • \ ( -h3

18



The vector U* must lie in the manifold spanned by the k+1 vectors

Vek , VM , hence it may be expressed

U* = C
VE*

VM*

= C Z*

where C is a lx (k+1) row vector of constants and Z* is the

(k+l) x (n+l) matrix obtained by bordering VE* below withVM*.

Since M is assumed to be independent, Z* has rank k+1. The

transversal condition may be stated as the condition that the

matrices VE*, Z* and Y*

Y* =
Z*

U*
, a (k+2) x (n+l) matrix

all have rank k+1

.

As a simple example, suppose we have the state variables

w, x, y and z, with all initial conditions specified and for

t=*T w constrained, x to be maximized, y, T and z free. We may

write

w X
10 constraints

10 maximum

u, Un Uo u^ -H adjoint variables

19



a 3x5 matrix which must be of rank 2 at t = T. Hence

u = u^ = -H = at t = T.

In the development above, free use was made of material from

11

a research paper of Faulkner. When each e. and M involves only

one variable of the set (S,t), the condition may be summarized as

folloitfs

:

(1.14) s (T) free implies u.(T) =

T free implies H(T) =

20



Chapter II

SOLUTION OF A GENERAL OPTIMUM PROGRAMMING PROBLEM USING

DIFFERENTIAL CORRECTIONS

2.1 The missing constants of the adjoint set.

It has been shown that if relations (1,12) and (1.14) are satis,

fied, then the resulting path generally furnishes an optimum to the

state S(T). Finding this particular path depends upon finding a

particular set of constants, which are the initial values of the

unknown adjoint variables. This being true, suppose for the moment

that the means exist for correcting a set which is "pretty good",

until the final "perfect" set is obtained. That is, we visualize

in the domain of U(0),the adjoint vector evaluated at t=0, the

point U*(0) whose coordinates are these "perfect" starting values.

If U(0) = U*, then integration of the first two of equations (1.11)

with the control chosen according to the third of equations (1.12)

will produce the optimum path. At some t=T on this path, the con-

straints will be satisfied, the desired variable will be maximiz-

ed, and simultaneously (1.12) and (1.14) will be satisfied.

In Chapter III a method will be given that will allow us to

correct from an arbitrary point U'(0) toward U*(0) provided U'(0)

is within some unknown region R in the vicinity of U*(0). The

difficulty is to find some point U(0) which lies within R. The so-

called Direct Method of solution used here reduces the problem to

21



the solution of a two-point boundary-value problem involving the

extremals. Consequently, the missing boundary conditions must

somehow be guessed. In general, the guess must be within some

region R, if the corrective program is to converge. In the Grad-

ient, or Steepest Ascent methods of Kelley and Bryson a nominal

trajectory is guessed and the two-point boundary-value problem

is solved by correcting along paths xrtiich are not extremals. This

method too has its disadvantages. For some problems the optimum

path may never be reached, although the correction program "con-

verges", that is, satisfies the convergence criterion. For the

problem treated in this thesis, a path was obtained by the direct

methods given here which attained a final value of the variables

to be maximized well beyond that of the "optimum" path obtained

by the method of Steepest Ascent.

2.2 Nominal paths.

An advantage of the Gradient Method is the following. In

physical optimization problems we often have some idea beforehand

what kind of control program is likely to come fairly close to the

optimum one. The only "guessing" involved in the Gradient Method

is to choose such a program and construct a nominal path which

connects the given initial constraints with the given terminal

constraints. Provided the guess is good enougn, the path is cor-

rected by making the integrated value of H smaller and smaller

along the path.

22



In a given problem, the degree of "goodness" required of this

nominal path when using the Gradient Method corresponds in a rough

way to the "goodness" of the first guess for U*(0) when using extre-

mals. In the former case, however, one can be guided by physical

reasoning. The physical meaning of the value of U'(0) is by no

means as clear.

In the preliminary work associated with this thesis, the authors

have worked on a means to generate a point U'(0) within R from a

nominal path. In the sample problem undertaken, the method works

well and provides a value for U'(0) which is quite close to U*.

The method is quite simple and straightforward and adds very little

complexity to the computer program which is used to correct from

U»(0) to U*(0).

2.3 The fundamental adjoint set

As a primary tool, we make use of the fundamental set which

is used by Faulkner ( 5 ). The fundamental set is the nxn matrix,

(2.1)

U =

u
ll

u
12

. u
In

U
21

U
22 • ' '

U
2n

u , u . . . u
nl n2 nn

whose value at t=0 is the nxn identity matrix and whose elements

are chosen so that u. . is the j'th component of the i'th solution
•-J
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to the adjoint equation (1.5). Note that each row vector of the

fundamental set is a particular solution to the adjoint (1.5)

•

For instance,

(2.2) ^(0)=
[^21

u
22

. . .»g= £100. . .0].

t=0

How, consider a particular combination of the row vectors U. ,

(2.3) U = cx
U
x
+ c

2
U
2
+ . . . + c

n
U
n ,

where the c's are constants.

This may be written as

(2.4) U = CU, where

(2.5) C =
Jcx

c
2

. . . £}.

Note that as thus defined, U(0) = C, so that the C's are the initial

values of the adjoint variables. At any time t, u. is the ith com-

ponent of U:

(2.6) \^\^l +c
2
U
2i

+
' • '

+C
n

U
ni«

or

(2.7) \ = c%» where

u. is the ith column of the fundamental set.

One of the c's may be chosen arbitrarily. If some state variable
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does not appear explicitly in the equations of motion, then the

corresponding adjoint variable is constant „ If this state vari-

able is to be maximized then it will be convenient to make the

corresponding c equal to plus one. If the variable is free at

either end point then the corresponding adjoint variable is zero

everywhere, and a different c will be chosen arbitrarily. In any

case, we must be sure that the corresponding adjoint variable is

non-zero.

ZA Program for generating the C-vector from a nominal path

In this section a program is given for generating a starting

set of constants U'. A nominal control program is chosen from

physical reasoning which appears likely to be fairly close to

optimal and which will generate a path from the given initial

conditions to a terminal point which satisfies or nearly satis-

fies the terminal constraints. This may be simple or difficult,

depending on the problem. If such a program cannot be found,

then this method for starting cannot be used, nor can be Gradient

Method, since both are identical up to this point. In this case,

we must go back to the "guessing game". It may be necessary to

"map" the U(0) hyperplane to find which regions give good start-

ing points, and then to try various points within those regions.

That is, guess the c's and calculate the corresponding trajec-

tories in some systematic way.
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Suppose however that a satisfactory nominal control program

is found. The equations of motion are now integrated numerically

from the given initial conditions using the nominal control pro-

gram, stopping when a terminal constraint is met At the same

time, we integrate also the n equations of the fundamental set.

At the terminal point S(T), each of the elements of the fundamental

set has some value u. .(T).

If the path had been the optimum path, equations (1.1*0

would have been satisfied at the point S(T) 6 We will choose the

vector C so that they are satisfied, using the values from the nom-

inal path. Then this vector C becomes U'(0) for starting the cor-

rective iterations. If the program does not converge, the nominal

path may be varied somewhat to get another trial C. In this way,

the problem of guessing the initial values of the adjoint variables

may be eliminated, as in the Gradient Method and still the optimum

path is approached through extremals.

It is to be noted that equations (1.1*0 are not the only

relationships which are used to furnish the required number of

equations in the C's. According to the particular problem, the

Hamiltonian may be constant, or a particular adjoint variable may

be constant. These allow use of relations calculated for t=0

rather than at t=T as above.
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2.5 Faulkner's method of differential corrections

„

A method was given above for obtaining a first approximation

for the starting values of the adjoint variables from a nominal

path. Let us now suppose that such a set is in hand which was

obtained in this way or in some other way.

If the equations of motion (1.1) together with the adjoint

equations (1.5) are now integrated numerically with the control

chosen according to the maximum principle or (1.7) a path results

which is an extremal in that it furnishes an optimum to some end

state. But the path obtained using this particular set of initial

conditions does not, in general, satisfy the terminal constraints

(1.2) and the transversal conditions (1.1^). We must have some

means for correcting these constants (which we have variously called

the C-vector or the vector U(0) in earlier sections) so that (1.2)

and (1.1^) are satisfied at some point S(T)„

The method used here is the method of differential corrections

developed by Faulkner (ref. 5) which makes use of differentials in

an iterative scheme which is of the Newton-Raphson type. Making use

of the fundamental set and the development of Chapter I, the method

may be presented quite simply.

Equation (1.6) provides the relation (for a problem without cor-

ners)
T r 1

JU&SJ =
J

UF <SPdto
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For every state variable s
i
which is specified at t = 0, os^Co) = 0,

For those which are free, we will require Uj_(0) = 0, so that u. ds^ =

for all cases. This procedure takes care of separated end conditions

in a simple and straightforward manner „ This case causes a great deal

of difficulty with some methods of solution. Note that there are

still n unknowns at the start, since the value of s^_ is unknown but

the value of the corresponding vu is known.

With this simplification, we have

m

(2.8) ftj
<5s]

T
= fo

(UF
p ) 6P dt,

where the dimensions are nxn for U„ nx1 for oS„ nxm for F and mx1

for P. From (1.7) we will choose the p's so that

Hp = UF
p

= 0.

Now if S and t are fixed and the c*s are varied by small amounts oC
a

then P must vary so that

(2.9) 6cU
cFp

+ 6PT H
pp

= 0,

where the superscript T indicates the transposed matrix. But since

U = CU , then Uc = U. Making this substitutions, and noting also

that H is the symmetrical mxm matrix whose ij'th element is

we now form the mx1 transposed of (2.9).

(2.10) (UF
p

)
T

6c
T + H

pp
6P =
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This equation is solved for &P, and the result is substituted

into (2.8).

b? = - (H )" 1

(UF )

T
6cT

PP P

(2.11)
T —1 T T

[j fe] = -J (UF
p

) (H
pp

) (UF
p

) c5c dt
T o

a form convenient for machine programming.

Now suppose each term in the integral on the right be denoted

as I... We have then at t = T

(2.12)

u
11

. u

\l . . . u.

In
•

s
1

« • = -

• e

nn n

•11 © C »

In . I

In
6c..

• a

nn
6c

n_ _J

Since one c is arbitrary, say c-, , then 6c-, = and the equation

furnishes n-1 relations among the 6c 1 s and the o's's.

In addition, the transversal conditions provide n-k equations

whose variational form is, for the problem to be considered here,

ou. = 6cu
i4

Now for corrections we let

(2.13) 6u
±

= - u^T) - u
±
(T) 6t = 6qu.

and also, for the k constrained variables,

6s
±

= - s^T) - Si(T) 6t + sc£r)
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where s (T) is the given terminal constraint for the ith variable.

Since there are k of these variables constrained , there remain

(n- k-l) elements &s^ in equation (2.12). These may be eliminated,

yielding k equations. The n-k equations (2.13) are adjoined to

these, for a total of n equations involving the unknowns 6t, 6c
2 ,

6Co, . . . 6"Cn in terms of the integral elements I^.„ the

elements of U(T), the deriviatives at t=T and the differences (2.13)

The equations are solved for the unknowns, and these are applied as

corrections for the start of the next iteration.
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Chapter III

DEVELOPMENT OE THE PROBLEM

3.1 General description of the problem and assumptions.

The problem described in this thesis is that of deter-

mining the optimal angle of attack program p(t), which will

maximize the distance covered over the earth's surface by a

hypersonic glider or lifting vehicle which has been injected

into some initial re-entry point. The starting point of the

trajectory is specified by the re-entry injection parameters,

the initial conditions, which are:

v{0) = 25,920 feet/second - initial velocity

h(0) = 30C ,000 feet - initial altitude
(3.1)

x(0) = nautical miles - initial distance

z(0) = 0.18 degrees - initial flight path angle

These parameters were taken from reference (8) so that a

comparison could be made between the Gradient Method used by

earlier authors and the method of differential corrections

which was used in this thesis. Also, the value of wingload-

ing, the value of acceleration due to gravity, the value for

a standard earth radius, and the value of a standard nautical

mile were taken from the same reference.

Eingloading = m£ =27=3 lb/ft
2

, where:
A

m = mass of the vehicle

A = wing plan form area

g = 32.2 ft/sec - acceleration due to gravity at

the earth's surface

The model atmosphere used was based on the tables of reference

(9). ^he atmospheric density was assumed to have the form

31



p-oQ~ , where the parameter b was calculated to fit the tab-

ular values at h = feet and h = 200,000 feet. It was fur-

ther assumed that the atmosphere was spherically symmetric and

fixed with respect to the earth for simplifying reasons,

3.2 Equations of motion.

The coordinate system used is depicted on Fig. 3.1 and the

equations of motion are:

* =
rTH

v cos z '

(3.2)

ft = v sin z ,

D
v = - - - g cos z ,m °

z = h + rth cos z - f cos z

where: R = 3440 nautical miles, the radius of the earth,,

D = |(/>v
2
A C

L )
,

L = \{r2
k C

D ) ,

r R -.2

g " s0LH+hJ '

The coefficients of lift and drag are from reference (8) and •

are

:

C T
= C r ~ sin d cos p I sin p

Li JjU

C
D

. C
LL

lsin3pl + C
DQ

Where: C
Ln

= 1.82 ; C
DL

= 1.46 ; C
D0

= 0.04? ; and p is the

angle of attack of the vehicle.

3.3 Adjoint equations.

rihe system of differential equations which is adjoint

to the variational equations of the equations of motion (3,2) is
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u
x

=

(3.3)

r Rv i rl cD cp iu
h

=
LrR7h72

cos zju
x + ^ ^ - ^ sm z] u

fv cos z 1_ cL + £g cosz]
UR+h) 2 "my eh dh v J

u
z

f-R c os zi r . 1 rl 6D7
"v = I—HTB—K "l

sln z
j

u
h

+
li evK

mv2 - 75

eL l

cv mv
COS Z _ g COS Z'

R + h v 2 j

"

lh
" Rv sin zl r i r iu

z -
1 ~ETh—'J

u
x -

[
v cos z

J
u
h

+ [e cos Z
J
U

,

+ f
v rin z . S sin z

1 u+ LR + n v J
u

j

The fundamental set of adjoint equations U or equivalently

(u, .) was chosen such that the fundamental set at time t =
1 J

is the identity matrix of rank four. That is:

a- <<v =

(3.^)

h1

X
u
2
X "1

4
u
x

< < -2
4

u
h

u
1

V
u
2
V «?

4
u
v

u
1

. z

2
u
z z

u
z

i t rT °

and further: (u, ,) L =7 (u,.)dt , where the u. . are defined

by the adjoint equations (3«3)« We have the further relation

that: U = [u u. u u ] = [c-, c
2

c 7 c^][u] which is a more

convenient form for computations using Fortran programming.

Tn general, the solution of the adjoint equations is

only determined to within a multiplicative constant , hence

we can choose one of the c's. Tn this problem, we chose c,=l„

Tf we consider the equations of motion in vector or

matrix form, we have the following relationships:
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s

x

h
v

.z

F = S
;

m

mv

-* c ^where P„ = 3—
P cp

The Hamiltonian is given by H = U°F.

3.^ Maximum principle.

For any extremal, we must satisfy the condition that

U»F = for any point on the extremal. This condition

uniquely determines the angle of attack program for that

particular extremal since:

V'% = §|u -v~u =
P cp z dp v

Substituting for •*— and -g— and solving for p we obtain?

(3.5) p = arctan 3CDL v 1

L2CLQ u
z
J

l\l
8

C
L0
C~~uzL
DL

Z

"2 1

- u.

F
for - j < p < j

?.5 Fnd conditions.

Since we wish to maximize the total distance traveled

over the earth's surfsee, we must have the following conditions

at the end time t = T:

x(T) = maximum

(3.6) h(T) =

v(T) , z(T) , and T free.

3.6 Variational equations.

On any curve without corners, we have the following

relation between the adjoint and the variations:
T

(3.7) [u^6x + u^&h + u^cv + u^6z]
T=^ "u'fe cp dt j =1,2,3,4

For an extremal we must also satisfy the Euler equations or
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the maximum principle of Pontryagin so that we have

r f i'_. _* _» _*

J
~U*F dt = maximum and U'Fn = along the extremal. If we

consider x,h,v,z, and t fixed and change the constants then

3ec\
6c

2
+

dc„
6c

3
+ fo

ec
^J

,p
p

+ u ' p™&p
3

PP

-g~ = U , 1 =2,3,^, we can solve for 6p and substitute in

equation (?.7) which will give us four equations with

which we can correct the initial values of the c's for a

terminal variation of the altitude h:

(3.8)

:,,-!

u^&x + u£&h + u^6v + u^zj r -51 / (tf^
p
)(U-Fp)

dt6c

<v —^ . _»1_, .
PP

Let I. ,=
J "0

(UVF (U-P )*- H-dtec.
U.P

PP
2 3 2i

Since u = 1 , u = u- = u v = for all t, and noting that
X XXX

I. . = I**, we can solve the following set of equations for fch

in terms of the 6c,

:

'4 2
u
v

21u
z

*6h" T T T
22 23 2k

2 < a3
z

ov =
23 33 3*4-

k k k
u
h

u
v

u
z. T

6z
.

I
2^-

I
3^

T^

6c
2

fc.

T .

6c
4.

(3.9)

Prom the transxersal conditions, we have that;

u
y
(T) =

(3.10) u
z
(T) =

(xu
y
+hu

h
) T

=

^rom the last equation of (3.10) we have: u
h
(T) = (-cot z).

T

-A _>

Since the Hamiltonian H = U«F and H(T) =0 from equations

(3.10), then the Hamiltonian is identically zero for all t.

This fact will be used to determine one of the constants (c
2

)

and effectively reduce the problem of guessing the initial

c's to start the calculations.
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The transversal conditions (3.10) give us three more

independent variational equations associated with the end

coni it ions

:

6u
v
(T) = [u^6c

2
+ u^6o

3
+ v^bck ] T

(3.1D 6u
z
(T) = [u^6c

2
+ \xhc

3
+ u^6o4 ]T

6[xu
x+

hu
h l T

= h(T)[uh6c2 + u^6c
3

+ uh6c J!f
] T

3.7 Differential corrections

The method of differential corrections given by

Faulkner in reference (5) was used for the solution of the

optimization problem. In general, we will guess the initial

values associated with the adjoint equations and the terminal

time T. For this problem, we must choose 03, c-a , c^ , and T.

We then correct these parameters by calculating an extremal

with the initial guess and then solve for corrections to the

parameters in terms of the end values associated with the

extremal. For all end conditions of the form s(T) = S , we will

generally have some error in s(T). We set 6s (T) = S - s(T) -

s(T) 6T. For this problem, we set ch(T) = h(T)-h(T)£T and in

a similar manner, we obtain from equation (3.11)°

-u
v
(T) = [u^6c

2
+ u^6c

3
+ u^£cJ T

+ u
v
(T)cT

(3.12) -u
z
(T) = [u

z
6c

2
+ u^£c

3
+ Ac^]

T
+ u

z
(T)fT

[cot z]
T

= h(T)[u^6c
2

+ u^ec
3

+ u
h £c,J T

+[xu
x

+ hu
h

+ hu
h l T

6T

These equations together with the solution to (3. 9) for 6h in

terms of the 6c' s will give a set of equations from which we
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solve for the fc's and £T to make corrections in the starting

values for the subsequent trajectory.

3.8 Computation of approximate starting values by use of

nominal trajectories.

In general, for a nth order set of differential

equations, one must choose (n-1) of the constants of the sol-

ution to the adjoint equations to start the oroblem. This is

generally a difficult problem in itself, since the constants

are not related to the ohysical aspects of the problem in any

discernable manner. One of the primary aspects of this thesis

was to find a method which could be used to find a logical

choice for the initial valves of these constants, Fortunately

the Hamiltonian was identically zero in this problem. This

fact, together with the transversal conditions ( 3«10) enabled

us to solve for approximate constants by first computing a

nominal trajectory; here we choose a nominal angle of attack

program p(t), which seems likely in a physical sense to

give a maximum distance trajectory. The first such nominal angle

of attack program tried was to use the maximum lift over drag

ratio where p=20.5 degrees, a constant.. This did not work.

We then used the following angle of attack program for which

we are indebted to Professor Faulkner

:

.0

P(t) = 5^.7 1 - hill __
750,000

The value of 5^*7 for p is the value at which we have

maxium lift. It was supposed that the ar.gle of attack was

never negative and from the data of constant angle of attack

programs, the value of 750, 000 feet was chosen to insure that

p was never negative.
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With this choice for the angle of attack program, we

obtained a good set of starting constants by integrating the

fundamental set U along with the equations of motion until h =

At this time, we solve the set of equations:

(3.13)

for C2 , Co, and c/j,. These equations are the transversal

equations (3 .10) . This problem of guessing the c B s is further

reduced due to the Hamiltonian being identically zero, since

for a given choice of Co and c^ , the angle of attack is uniquely

determined from equation (3*5) and then we may solve for C2 from

the Hamiltonian at time t = 0. If we have the case where h(0)=

0, then we have a singularity and connot solve for Co , but in

this case, the choice of 03 is arbitrary. Effectively, this

problem is then reduced by an order of one and we need only

guess two constants, We felt that if we had an extremal, we

would determine its constants in this manner and hence we could
which

get estimates for the constants from a trajectory^ was a "good"

approximation to an extremal.

3.9 Computational scheme.

This problem was orogrammed on a CDC 1604 computer

using a Runge-Kutta integration method. The computational

scheme is as follows:

i) We need a nominal trajectory to start. To get it, we

first intergrate the equations of motion 0*2) and the fundamental

set (3.4) using a programmed angle of attack and ending the
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trajectory when h = 0. At this time, we solve for the

initial constants c 2 , Cj , and c^ from equation (3,l}\ We then

"se these constants to start the first optimal trajectory,

ii) Then we compute the first optimal trajectory where

the angle of attack program is determined by the maximum

principle. We integrate the equations of motion, the fundament-

al set, and the nine I
1 j in equation (3.9) a total of twenty-

five equations. We terminated the integration when one of

the following conditions is met: h = 0, u = , u.= , or

I !
^ TT

lzl= p» since it was felt that the end of the significant part

of the trajectory had been reached. We felt that in this

problem no optimum would occur for u < since the resulting

high drag would dissioate energy needlessly. The supposition

that this is a maximum distance trajectory dictates that I z

I

< ~«

Since we do not have t appearing explicitly in the equat-

ions and since the terminal conditions determine T, we do not

use 6T in our calculations. We only need the 6c' s the correct

the c's to start the next trajectory.

iii) We then repeat the computations as in the above

paragraph, using the new c's for the next trajectory. We

test for convergence at the end of each trajectory:

(3.U) If [h(T)j
2

+ [xu
x

+ hu
h ]

2
+ [u

v
(T)]

2
+ Lu

z
(T)]

2 =£

we say that we have converged to the solution.

3.10 Results and conclusions.

The optimum trajectory that was calculated is deDlcted

on Fig. 3.3 and the corresponding angle of attack program is

depicted on Fig. 3A On these two figures, a comparison has

been made between the results of this thesis and results from

reference (8) , which were obtained by the Gradient (or Steep-
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est Ascent) Method. The comparison can r.ot be considered as

an exact one since the integration method, the time step

ofc integration interval, and the approximation to the

atmospheric models may not be identical. However, there

appears to be a significant increase in the maximum distance

obtained using the method of differential corrections.

The convergence criteron (3. 14) we initially chose turned

out to be a poor choice. We could not determine how close we

were to the optimal solution. We then proceeded to "map"

the plane of Co and c/4, by using a systematic choice of 03 and

Cj, and computing the corresponding extremals <> The results of

the mapping procedure are given on Fig. 3.5, Fig. 3.', and Figo3c7<>

Fig. 3.5 shows the contours of distances obtained by extremals

as a function of c^ and Cj,. Fig. 3*6 gives detailed contours

around the optimal solution. Pig. 3,7 is a cross section of the

"ridge" which occurs in the c^ and Cj, plane. It is a con-

jecture of the authors that some difficulties are encountered

by a gradient method solution when there exists such a ridge

in a problem, since the slope is nearly zero.

The major problem encountered was the apparent instability

of the problem near the end of an extremal, We attempted to

integrate backwards from the terminal conditons and found that

this was virtually impossible. The problem seems to be unstable:

we could not even integrate backwards with constant p. Back-

ward integration was very good if we started backward from a

point that was not too close to the end of the trajectory.

Another main problem encountered was that of determining



the end time on a trajectory. We first thought that all we

need consider is the time when h = . However, we found

thai other conditions effectively terminated the useful part

of the extremal earlier. For example, most extremals led to

a point where izi> •=••

Theoretically, on the maximum distance trajectory, all

terminal conditions would be met simultaneously. Tn the actual

computations, this did not occur. The most probable reason

that we have this apparent discrepancy is that the round off

errors in the calculations and the inherent error in the

integration method are large enough to nrevent us from satis-

fying all conditions at the end time,

Tn the final analysis, we found that a program which

reduced the magnitude of the corrections would lead to con-

vergence. The method used was to calculate a set of c's

from a nominal trajectory and then calculate the first tra-

jectory and the 6c 's corresoonding to that trajectory

,

store x, the c's, and cc's of this trajectory and then cal-

culate the next trajectory. If the distance of this trajectory

is greater than the distance of the preceding one, we proceed

with the iterative process. Tf the distance is less, then

we reduce the corrections by one half and calculate the tra-

jectory again. If we still have less distance, we further

reduce the corrections until we obtain a greater distance.

The reason we developed this method was because the magnitudes

of the fc's were of the order of magnitudes of the c's

was noted that the integrals relating 6h to the £c's are

improper integrals. This, in addition to the unstable char-



acter of the end of the trajectory, tended to make the

magnitude of the 6c*s large; however, the program did

correct in the right direction. These integrals seem to be

divergent for the extremals which satisfy the transversal con-

ditions. A formulation of the oroblem suggested by Professor

Faulkner which would avoid these divergent Integrals by using

a set of u's which were determined at the end time was pro-

grammed. However, this program was not checked out or run

since the original integrals did not actually diverge in cal-

culations made on the computer. The method suggested was to

* -it-

use a fundamental set U such that U (T) = 6, . After com-

puting an extremal using U , we solve for the matrix of con-

stants ra, .] which satifies the relation: U(T) = [a44 ]U(T)«
i J — l j

—

We then compute the same extremal using U = U, + cU~ , where

-» 4- -iU 4 = 2_ a -
<
u » i= 1»2. We then have the relation

.1 = 1
1J

2 ' v>' dt to and we solve for 6c to correct the-_*-_

—

u U -F
PP

starting va'jues. Further, this integral is not divergent.

The first integration method used in calculations was

rectangular integration and it was found that trajectories

thus calculated were very rough. A comparison of the rectang-

ular integration method and the Runge-Kutta method was made

and we chose the latter method due to its accuracy and

smoothness.
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Figure 3.6

Detailed Contours of the c^ - c^ plane

Jontours are given in thousands of nautical miles
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